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ABSTRACT 

The atmospheric tide within the thermosphere driven by the solar EUV heat 

input has a predominant diurnal component, contrary to the tides within the 

lower atmosphere where the semidiurnal component prevails. Based on this 

observatorial fact, a theory of the thermospheric tides is given in which the 

spherical harmonics of lowest degree are eonsidered as the eigenfunctions of 

the problem. Perturbation theory is used which leads to a complete separation 

between a zonal and a diurnal system. A general solution is given and the zonal 

and the diurnal horizontal windsystem at 300 km height is calculated. This 

windsystem has an equatorward directed component at low latitudes during day- 

time which allows to explain the equatorial F2 anomaly as resulting from an 

enhancement of electrons at f 10" latitude due to such winds. 
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ON THE DIURNAL TIDE WITHIN THE THERNOSPHERE 

1. Introduction 

While the knowledge as well as an adequate basic theory of the tidal motion 

of the lower atmosphere are more than 100 years old [see e.g. the review articles 

of Wilkes (1951), Kertz (1957) and Siebert (1961)], the diurnal tidal variation of 

the thermospheric density has been discovered only -3 years ago from satellite 

drag measuraments (see e.g. the review article by Priester, et al. 1967). The 

most important difference between the atmospheric tides within lower and upper 

atmosphere is the predominance of the semidiurnal component in the lower 

atmosphere 2nd the predcminance of the diurnai component in the upper atmos- 

phere. 

There exists general agreement that the driving force within the whole 

atmosphere is predominately solar radiation - absorbed by water vapor in the 

troposphere, by ozon in the stratosphere and mesosphere and by oxygen within 

the thermosphere (Lindzen, 1967). Thus, the diurnal component of the driving 

force is much larger than the higher harmonics. The predominance of the 

semidiurnal tide within the lower atmosphere in spite of its smaller excitement 

has originally been considered as a resonance effect. One eigenvalue of the 

atmosphere comes very close to 12 hours, the period of the semidiurnal solar 

tide. Recently, however, suggested by Siebert (1961) and quantitatively worked 

out by Kat0 (1966) and Lindzen (1967), it has been shown that the diurnaS com- 

ponent really is the extraordinary or-2 being an evanescent mode with negative 

equivalent depth so that its propagation is suppressed. It will be shown in 
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section two of this paper that the diurnal solar tidal wave becomes a propagation 

mode within the thermosphere, thus predominating the tidal motion there. 

Tidal theory of the thermosphere started with the one dimensional model of 

Harris and Priester (1962) in which heating within a vertical column an2 its re- 

sultant dyrarnic behavior have been studied. The main shortcomings of this theory 

were that the calculated diurnal density variation was not in agreement with the 

observations. Harris and Priester therefore iiitroduced an ad hoc second heat 

s o u x e  in order to shift amplitude and phase of the calculated valucs toward the 

measured data. It has been shown from a two dimensional equatorial model 

pol!and et al., 1969) that the natural response time of the thermosphere 

with respect to maximum sola? heating is just 2 hours in agreement with the 

observations and that a diurnal tidal gravity wave propagating from the lower 

atmosphere into the thermosphere is superposed to  the diurnal waves generated 

within the thermosphere by the EUV heat source. 

A complete theory of the diurnal tide within the thermosphere is more com- 

plicated than the classical tidal theory because heat conduction has to be taken 

into account. Therefore, the basic tidal differential equation becomes a fourth 

order equation contrary to the second order Laplace equation i n  the classical 

case. Moreover, the number of eigenvalues doubles, and there does not more exist 

a clear distinction between propagation modes and evanescent modes because the 

eigenvalues are complex. On the Dther hand, the theory of the thermospheric 

tides in some ways becomes easier to handle than the classical theory because 
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of the predominance of the diurnal component and because the boundaries of a 

given thermospheric model behave like free internal boundaries. 

Subject of this paper is to give the basic equations and general solutions of 

the the-mospheric diurnal tide. Furthermore, we shall discuss the implications 

of these solutions on the thermospheric wind system and calculate the horizontal 

wind field at 300 km altitude. An exact numerical integration of the  tidkl motions 

will be given in a subsequent paper. 

2. Propagation Modes and Evanescent Modes 

In this section w e  wi l l  give a very crude description of the propagation 

modes and the evanescent modes in tidal theory based on a plane model of the 

earth and neglecting Coriolis force and heat conductivity. We do this merely to 

achieve a basic physical picture of the nature of the wave modes and its change 

within the different atmospheric levels. 

We idealize the earth's atmosphere durin.g equinox by a rectangular trough 

x represents the of length ky = 27rR and of wideh A x .  R is the earth's radius. 

meridional component, positive in south direction. y represents the longitudinal 

component, positive in east direction. The length of Xx wil l  be defined below. 

The lower boundary of the trough is the earth's surface. The trough is open in 

the upward direction. The atmosphere within t h i s  trough shall be isothermal 

and shall behave adiabatically. In such atmosphere the diurnal solar heating can 

generate gravity waves nf the following type: 
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with 

d n ( n  i- 1) - m 2  __ Y -crJinpor,ent of horizontal wave number - 7 - 
R knm - - - 

27rm m 
k m  = -  - -- y -component of horizontal wave number 

x Y  R 

= iGrn horizontal wave number i n ( n  + 1) k,, = 
a 

wm = rn Q angular frequency of the wave mode 

R angular frequency of the rotatirig earth 

k m  
7 = t +-  y local time 

t universal time 

x, y , z coordinates in iouth-, east- and upward direction 

( m ,  n )  integers determining the domain of wave mode. 

eigenvalue of the gravity wave of domain (11, m )  [ see  Hines (1960), Equation (14); 

and Siehert (1961), Equation (4.12)l 

C velocity of soluld 

- Y g  
w ,  - - 2c 

- '' - W ,  Brunt-Vaisala frequency 
W b  - Y 
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g gravitational acceleration 

y ratio between the specific 

force 

heats at constant volume and at constant pressure, 

mZC y il 

The last approximation in Equation (2) is valid because within the ranges of fre- 

quency and height, which we consider, it is wa > > wm. 

The plus sign of the exponential factor in Eqt ;ion (1) is related to an upward 

propagating gravity wave, the minus sign is related to a downward propagating 

wave. We define as propagation modes waves with real eigeavalues Anm [ S, ,  > 1 

in Equation (2)] and as evanescent modes waves with imaginary eigenvalues 

A,,,, = j I A,, I [ S,, < 1 in Equation (2)].  Evanescent waves are suppressed very 

rapidly during their propagation. They do Rot participate in an effective wave 

energy flux. A wave changes its character from a propagation mode into an 

evanescent mode at Snm= 1. The boundary condition of zero wind velocity at the 

ground ( z  = 0) determines the remaining amplitude factors A,,,, of a combination 

of an upgoing and an downgoing wave of the sane dompin (n, m). 

The specific choice of the x-component of the horizontal wavenumber in 

Equation (1) has been made in order to allow a direct comparison with the eigen- 

values ~m a sphere. These are for a nonrotating spherical earth the spherical 

functions Pnm (O), where Prim are the associated Legendre's polynoms and 0 is 

the colatitude. This comparison can be made by replacing the term cos (k,,y) 

in Equation (1) by P,, . In the classical theory of tides the horizontal wave- 

number k, is equal to 
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where h, is the so-called equivalent denth, because water waves ill shallow 

oceans of depth h, have in Pact the horizontal phase velocity 

v* = dph,. 

According to our definition, k, is the horizontal wavenumber which deter- 

mines the horizontal phase velocity V, of t h e  characteristic waves of frequency 

Table I contains the numbers Sn, of the first three symmetric functions Pn, 

from Equation (3) for the diurnal modes (m = 1). Ro,v 1 in Table I has been cal- 

culated for an isothermal lower atmosphere with temperature To = 250" ( C  = 

320 m/sec). We notice that the eigenfunctiiin P, , has a value S, , < 1 and thus 

belongs to the evanescent modes, while the higher eigenfunctions P, 

propagation modes. In an exact calculation taking into account Coriolis force 

the eigenfunctions Prim must be replaced by the so-called Hoagh functions 

and P, , are 

which a m  sums of the associated Legendre's polynoms centered around the pre- 

dominant function p,, . The determination of tho eigenvalues of Brim is much 

more complicated than in the case of the nonrotating earth. Here, imaginary 

horizontal wavenumbers k, and therefore negative equivalent depths hn appear 

in Equation (2) for e,, and e,, (Lindzen, 1967). Thus, the condition of an 
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evanescent mode for PI, is even stronger valid than in the case of a nonrotating 

earth. It is this fact, the evanescent mode type of the function 

which causes its wsak generation within the lower atmosphere in spite of the 

predominant exitation force which goes into this wave dontain by the solar heating. 

Table 11, row 2, contains the numbers Sn calculated for a temperature cf 

To = 1000°K (C = 750 w./sec) which is a typical thermospheric temperature. 

Now w e  notice that eve1 the first eigenfunction P1, belongs to the propagation 

modes. Heat conduaticn and ion drag seduce the influence of the Coriolis force 

within the thermosphere (Volland, 1969). On the other hand, the differeme be- 

tween propagation modes and evanescent modes becomes vague because the 

eigenvalues are complex givilzg rise to wave energy dissipation even of propaga- 

tion modes. Full wave calculations of the propagation of free internal gravity 

waves within the thermosphere show that maximum transmission of gravity 

waves exists n t a r  Snm = 1 and that with increasing Snm > 1 the transmission 

coefficimt of gravity waves drops like 

wkere b is a positive number depending on frequency and the model adopted 

(Volland, 1968b). 

We expect therefore that the high temperature, the specific pomet r i c  and 

rotational data of the earth and the influence of heat conduction and ion drag 

cause the preference of the function PI in the diurnal tidal wave propagation 
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within the thermosphere. This is exacl ~ what we notice from the observed 

data of density and temperature (see e.g. Jacchia and Sowey, 1967; Priester et  

al., 1967, Taeusch et al., 1968). The predominance of the tePm P,, t c g n s  at 

about 110 k m  altitude a s  w e  can see from the analysis of the geomagnetic Sq 

current (Kato, 1956). 

3. The Basic Equations 

The complete basic equations of conservation of mass, momentum and energy 

and the equation of state written in spherical coordirrates are given elsewhere 

(Priester et SLL., 1967). The following analysis makes use of some assum-ptions: 

a. Amlication of the Derturbittion theorv and use of a dven mean 

atmospheric model 

Perturbation theory implies that all physical parameters, depending on time 

o r  latitude, arc? small compared with the mean values averaged over time and 

sphers. Thus, higher order terms of these parameters shall be  neglected. This 

is a sufficient approximation as long as the relative magnitudes of the coefficients 

in the series of spherical harmonics are smaller than 0.3: 

I I 
< 0 . 3  (n > 0) , - 

0 

This condition holds in fact for all parameters of the thermosphere below about 

400 km altitude (see e.g. ClRA, 1965; Volland et al., 1969). Numerical cal- 

culatioca, which w i l l  be presented elsewhere, therefore, a re  limited to this 

height range. 



An important result of perturbation theory is, that the varhtions can be 

compktta!:. separated into domains of numbers m y  because any coupling becween 

the different domains m only occurs via nonlinear terms of the perturbation vari- 

ables. The validity df perturbation theory, on the  other hand, justifies the static 

diffusion model of Jacchia (1964). Therefore, w e  c a ~  use mean values of tem- 

perature, density and molecular weight from thc Jacchia mcde? . Molecular 

weight as well  as the coeificient; of heat conductivity show small time and Iati- 

tudkal variations below 4GO km altitude in the Jacchia model. These values 

therefore are considered to  be only height dependent. The collision number 

between ims and neutrals is praportional to the ion deasity. This value strongly 

depends on height, latitude and time. 12 older to be consistent ia our model w e  

can only take into account its height and latitude dependence. 

b. Use of a given independent EUV heat source 

The EUV heating of the neutral atmosphere via inelastic collisions with the 

ions depends itself on the temporal state of density, temperature and composition 

of the neutral air. For convenience we shall use a @veri independent EUV heat 

source which can e.g. be derived from the calculations of Harris and Priester 

(lS62) and extrapolated into the whoic sphere. In view of the large uncertainties 

in the determination of the efficiency factor of the heating this does not add 

very much to the e r rurs  already involved in the problem. 
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c. Negligence of molecular viscosity 

Molecular viscosity mainly influences the horizontal wind field via vertical 

windshear. It can be shown that below 400 km its influence on the dynamics of 

the diurnal tides within the thermosphere is small compared with the accelera- 

tion force o r  the ion drag force in the equation of conservation of horizontal 

momentum (Geisler, 1967; Kohl and King, 1967; Volland et cl., 1969). 

negligence of viscosity greatly simplifies the handling of the differential equations. 

The 

d. Wind ccjmpon@s are perturbation variables 

We shall treat a11 wind coirqonents including a mean longitudinal wind v,, 

as perturbation variables, thus neglecting squares and higher order terms. This 

is justified because generally the condition 

holds below 400 km altitude. anm is the coefficient of one of the wind components 

within the series of spherical harmonics, and C is the velocity of sound in the 

particular height. Furthermore, we shall assume that the ions are completely 

bound by the earth's magnetic field, but can move freely with the neutral wind 

along the geomagnetic lines of force. Then the relation between ion velocity Ti 

and neutral air velocity Q is given by 

(a * Bo) B, 

Bo2 

= - -  vi - 

where E, is the magnetic field of a dipole which approximates the geomagnetic 

field. 
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e. Predominance of lowest domaiii numbers n 

Odr model is valid for equinox conditions. Therefore, the asymmetric 

spherical harmonics of density and temperature variation disappear. Moreover , 
we confine ourselves to the diurnal component of the tides. We treat, therefore, 

only the domains 1 . 1  0 and m = 1 of number m.  As outlined in section 2 w e  have 

reason to believe fron- a theoretical point of view that the term P, , is predomi- 

nant throughout the thet mosphere. This is confirmed by the measurements 

(Priester et  al., 1967; Jacchia and Slowey, 1967; Taeusch et ale, 1963). Lilmvise, 

the density observaf;i.ons show a predominance of the term P,, in the meridional 

variation (Newton, 1968). We, therefore, assume that within the domains 

n; = 0 and in = 1 the higher order n- terms of the density- variations are small 

compared with the perturbation coefficients of P,, and P, and can be neglected. 

Equivalent assumptions are made for the other physical parameters. This 

classification of the coefficients of the spherical harmonics into three classes 

of successive importance: 

greatly simplifies the calculations. It means that we can in fact treat the spheri- 

cal harmonics P,, and P 

spectively. 

as the eigedunctions of systems m = 0 and 1, re- 

With the assumptions outlined above the system of equations governing the 

dynamic behavior of the thermosphere is given by 
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+ u sin2 I u - 2Q c3s B v - v sin I cos I w 

- R 
P - M , , P T  

Equations (7) to (12) are the equations of conservation of mzss, momentum and 

cnergy, respectively. Equation (12) is the equation of state. It is 

(8, A, r) spherical coordinates 

t time 

v = (u, v, w) vector of wind veLocity with i"s components in south-, east- a .  

and upward direction. 

p pressure (poo mean pressure) 

p density (poo mean density) 

T temperature (Too mean temperature) 

R angular frequency of the earth's rotation 

u numhar of collisions between the ions and one neutral 
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I Inclination angle of the earth's magnetic dipole field 

g magnitude of gravitational force 

cv specific heat at constant volume 

K~~ mean coefficient of heat conductivity 

R gas constant 

Moo mean moleculsr weight 

A =  1 a2 + 1 2 a e  ( s i n e  &) 
r2 sin2 8 ax2 r2  s i n  e 

4. Development of: the Physical Parameters in Series of Spherical Harmohics 

Our model shall be valid during equinox conditions. Therefore all asym- 

metric spherical functims in the development of density, temperature and pres- 

sure  disappear. Because of our assumption in Equation (6) higher order terms 

of the coefficients the series of spherical harmonics are neglected. We use 

the mormal i zed  associated Legendre polynoms, which are 

Po, = 1 

P,, = c o s 8  ; P,, = s i n 8  

We start with the expressions for temperature, density, pressure and vertical 

wind. They have the genera: form 
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Here, of course, the mean vertical wind disappears (woo = 0). Because a l l  (r)  

is complex, w e  consider the real part 

2 Real all(’) dnT} = iAlll c*s{ R(7- - T1l)} I 
as the physical solution. 

is the magnitude 2i1d 

is the time lag. 

It is 

the local time, while t is the universal time. 

In the development of horizontal winds into series of spherical harmonics it 

is convenient to add a factor (sin O ) * l  to the series. This allows a direct trans- 

formation of the spherical harmonics of equal domain m within the system of 

Equations (7) to (12), merely by using the well known recurrence formulae of 

spherical functions. 

We have to introduce a mean longitudinal wind voo in order to  obtain a 

unique solution of the problem. Meridional winds as well  as longitudinal winds 



are  symmetrical with respect to the equator during equinox. Longitudinal winds 

and the zonal-component of the meridional wind disappear at the poles. But the 

time dependent component of the meridional wind is different from zero there, 

became a finite pressure gradient can be maintained at the poles. 

In order to fulfill the conditions outlined above w e  introduce the expressions 

We have reasons to expect that this representation of the horizontal winds 

possesses the fastest convergence rate, thus allowing as a first order approxi- 

mation the negligence of higher order terms in the series. 

We furthermore assume known functions .of altitude of the coefficient of heat 

conductivity K~~ = A (r) i T o o  (r) and of molecular height Moo (r). Likewise, the 

EUV heat source Q is assumed to be developed in a general form of Equation (13). 

As one can easily see from a harmonic analysis e.g. of a Chapman-function of 

the ion production the three coefficients in  Equation (11) constitute the predomi- 

nant heating terms. 

Finally, w e  take a, known function of the collision number 

because the coefficients voo and v20 have comparable magnitudes. The angle of 

incidence I of the geomagnetic dipole is related to the colatitude in a well  known 

manner. We obtain 
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2 s i n 8  COSB J sin I cos I 

1 > 
(1 -t 3 C O S Q )  

and develop 

with 

aO0 = 0.604 

aZO = -0.520, 

neglecting higher order terms. 

With these assumptions we enter Equations (7) to (12), use the recu2rence 

formulae of the spherical hamonics  (see e.g. Jahyke and Emde, 1945), collect 

all coefficients belonging to the domain (n, m) and oh' tin for each Equation (i), 

numbered according to the Equation-number (7) to (1. ; sxpressions of the general 

form 

m m 

Because of the orthogonality of the spherical harmonics each coefficient FJ: ) 

must be zero. Thus, we find the set of equations (for abbreviation w e  write: 
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(1%) 

6 R 3 p 2 0  
' j -yloulo - Rvoo - ("yoo + T) w20 - - - - - 0 (19e) 

2 rp00 
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with 
- u20a20 

Po0  - ~'00a00 +- 5 

with 
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The right hand side of Equation (18a) i s  not exactlgr zero but consists of 

terms of the same order of magnitude a s  the terms in Equation (19f). As one 

can easily see,  these terms are two orders of magnitudes smaller than the terms 

on the left hand side in Equation (18a). If they are neglected, Equation (18a) is 

the barometric height formula. Now the system of Equations (18) is completely 

decoupled from thr? system of Equations (19) and g?ves the mean values averaged 

over time and sphere. 

Equations (19) belmging tc the cioirain m = 0 describe the time independent 

latitudinal variations of +,he thermospheric parameters. This syslem wi l l  be 

called the zonal system. Equations (20) belonging to the domain IR = 1 give the 

diurnal variations. W e  call this domain the diurnal system. 

5. General Solution 

The approximate validity of the barometric h Aght formula [Equation (18a)l 

a!lows the determination of mean temperature, pressure md  molecular weight 

from the observed mean density by a static diffusion model (Jacch,ia, 2964). In 

our tre&tn.ent of the diurnal tide within ?.he thsrmosphere we therifore start with 

these known parameters of the thermosphere and use them for the nor.malization 

of the set of Equations (19) End (20). W e  write for abbreviation 
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We eliminate the parameters pCi), d i l y  uti) and V(O) from Equations (19d) 

to (19g) and (20d) to (20f), respectively, and obtain two independent systems of 

first order linear ordinary differential equations, which we write in  concise 

matrix form 
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with 

and 

C = velocity of sound 

K(O) g) is a 4 X 4-matrix with real elements, K( l )  (e) is a 4 x 4-matrix with 

complex elements. The elements of K(i) can be found from Equations (1s) and 

(ZO), respectively. The elements of K(') as  wel l  as of ei are dimensionless 

and are of comparable magnitudes. 

Equation (22) can be solved by standard methods. If we approximate the 

real atmosphere by a number of isothermal homogeneous slabs of thickness ner 
in  which the elements of K! ) are constant, then the solution of Equation (22) 

is 
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with 

e = o  

E unit matrix, 

The matrix T i  matches the boundary conditions of continuous wave parameters 

w, p,  T and K T' at the boundary between two adjacent slabs of temperature Ti -, 
and Ti.  
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6. The Horizontal Wind System 

From Equations (19e) to (19s') and from (20e) and (209, respectively, we 

notice that the horizontal winds a re  connected with the vertical wind and the 

pressure by liiiear equations. Since the vertical wind is at least one order of 

aagnitudc smaller than the horizontal wind coirponents, we can neglect the 

vertical wind. In the following discussion we %hall neglect furthermore the 

higher order terms v20 and azo of the collision number and of the magnetic dip 

angle, because they influence the numerical values of the winds but not their 

general behavior. In the numerical calculations which wi l l  follow in the next 

section we shall however take into account these higher order terms. 

Negligence of vertical winds and of latitudinal dependence of collision num- 

ber and dip angle leads then to very simple relations between the horizontal wind 

components and the pressure field. These are for the zonal 

"0 0 7 1 p20 

system (in = 0) 

- 3 v o o  
U I O  - --- 2 Q "00 ; 
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For the diurnal system (m = 1) w e  obtain 

with 

c - P 
y - -- 1.5 

c" 

For large collision numbers (vo /Q > > 1) it is 

For small collision numbers (voo/R < < 1) only the meridional zonal velocity 

ul0 a voo depends on voo . The magnitude of the horizontal winds therefore is 

very sensitive with respect to the collisions between neutrals and ions. 
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The longitudinal wind of system m = 0 is 

- 
vzonal - s i n 8  (vooPoo + v20P20) = 3 s i n 8  c o s 2 8  vo0 

This wind is the geostrophic wind due to the meridional pressure gradient p20.  

Collisions between neutral and ions cause a mean meridional wind ul0 to flow 

in the direction of the pressure gradient. Collisions moreover reduce the mag- 

nitude of the geostrophic wind vzonal . 

A ziean longitudinal wind [Equation (26)l means that the whole atmosphere 

rotates with respect to  the earth surface. It has been pointed out by King-Hele 

aiid Allan (1966) that such wind exists within thermospheric heights. King-Hele's 

winds, derived from the observation of the changes in tie orbit inclinations of 

satellites, blow from west to east and are of the order of 100 m/sec. One of 

King-Hele?s explanations for the origin of these winds is in fact the geostrophic 

wind hypothesis. The pressure gradient built up to generate this wind must be 

directed toward the poles. Observation of Jacchia and Slowey (1967) as well  as 

density measurements on board of Explorer 32 (Newton, 1968) however 

show that during low solar activity (F  < 150) the zonal pressure gradient is 

directed toward the equator above 300 km altitude ( p20 > 0). According to 

Equation (24) this pressure gradient causes a meridional wind u blowing 

toward the equator which is in agreement with a hypothesis to explain the eqiia- 

torial F2 anomaly (Mayr and Volland, 1969). At moderate solar activity (F  = 150) 

the zonal pressure p20 disappears and it mems likely that it becomes negative 

at high solar activity. According to Equations (24) and (26) we therefore expect 

a zonal wind blowing toward the west at low solar activity and blowing toward 
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the east at high solar activity. Geisler (1967) too finds this westward zonal wind 

at solar minimum conditions from his numerical study of the horizontal wind- 

system in the thermosphere. King-Hele however states from his observatims 

that the mean wind always blows toward the east regardless of the solar activity 

with even a greater magnitude at solar maximum than at solar minimum. 

There exist several possibilities to explain this discrepmcy between King- 

Hele's observations and the theoretical results. First ,  it wi l l  be shown in 

Figure 2 that 'due to the higher order terms of the collision number and the geo- 

magnetic dip angle the calculated zonal wind blows toward the east within i 1 5 "  

from the equator at 300 km altitude. Second, we neglected in our calculations the 

time dependence of the collision number. A diurnal term v l  

zonal system with the diurnal system. It has been pointed out by Volland (1966), 

that such coupling would in fact give rise to  an additional eastward component of 

the mean wind. Third, electric fields, entirely neglected in our treatment, could 

cause ion drift such that the observed mean wind results (Hines, 1965). 

would couple the 

We should bear in  mind however that the zonal pressure gradient not only 

depends on solar activity but also on height. For a better understanding of this 

problem we need numerical calculations of the three dimensional wind and pres- 

sure  fields, and furthermore w e  have to wait for more detailed observational 

data of the zonal wind depending on height, latitude and solar activity before a 

final answer can be given. 
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7. Numerical Calculations of the Horizontal Wind Field 

For  a numerical study of the horizontal wind field at 300 km altitude we used 

the following data valid at low solar activity (F = 100): 

Mean temperature and molecular weight from CIRA model 3. From (Volland 

et al., 1969) the relative diurnal pressure 

( T ~ ~ ) ~  = 1430 local time 

From Newton (1965) the zonal pressure, extrapolated from his density and 

temperature data 

p20 

Po 0 

- -  - 0 .25 .  

The collision number from the maps of the F2 critical frequency (Martyn, 1955) 

voo = 2 .4  x sec-l 

v20 = - 1.9 x 10-4 sec-1 . 

We calculated the horizontal winds from Equations (19e) to (19g) and (20e) and 

(20f), respectively, and neglected the vertical wind components. Figures 1 and 2 

give the calculated zonal winds 
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the mean 1on.gitudinal wind 

- 
"me an - s i n 6  vooPoo 

and the magnitudes of the diurnal winds 

- 
' d i u r n a l  - 21vlll  s i n 0  p l l (6)  

versus latitude. Moreover, the total horizontal winds 

- 
' zonal  + ' d i u r n a l  u .- 

where the time lags have been calculated to 

T~~ = 210° local time 

= 2,' local time, 

are plotted for the time of maximum and minimum winds respectively. 

We notice that due to the higher order terms v~~ and aZO of the collision 

number and of the geomagnetic dip angle the zonal longitudinal wind vz0 

a small eastward component near the equator (Figure 2). 

has 

Furthermore, the meridional wind u blows at low latitudes toward the 

equator even at day time. This unexpected resu1L follows from the relatively 
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large zonal u I o  -component which predominates the meridional velocity at low 

latitudes. Such equatorial wind at noon can in  fact create the equatorial F2 

anomaly: the relative maximum of the F2 electron density at &loo latitude and 

the trough at the equator, The electrons drift upwards by the equatorial wind 

and cause an enhancement of the electron density near the equator (Mayr and 

Volland, 1969). 

The wind u l0  depends on the zoqal pressure gradient p 2 0 .  This pressure 

gradient disappetirs at heights a h s 5  a??. km at moderate solar activity and 

probably becomes negativ.; with €u?cher increasing solar activity (Yewton, 

1968). A s  a conseyueiwe the equatorward directed wind at noon decreases or 

even reverses with increasing solar activity, giving rise to a weakening or  disap- 

pearance of the F2 anomaly. This picture is in qualitative agreement with the 

observations. 

An equatorward wind implies of course a total pressure gradient directed 

toward the equator. The combination of the pressure terms pz0 and p1 chosen 

in Equations (27) and (28) therefore gives rise to a small relative pressure mini- 

mum at the equator at noon. The elongation of the density bulge at noon and at low 

solar activity observed by Jacchia ani; Slowey (1967) points in fact into this direc- 

tion. It is possible that due to the low degree of space and time resolution in the 

satellite drag measurements this minimum has been overlooked. 

Whether the p20 term is mainly created by solar EUV o r  by another heating 

mechanism (e.g.: the regular component of the precipitation of high energy 

electrons into the auroral zones related to the geomagnetic S,-current) is an 
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open question. The different components of the pressure gradient are certainly 

functions of height. Since most of the heat is deposited within a height range 

below 200 km we expect a pressure gradient built up there and directed away 

from the heating zone. In the case of solar EUV hee.<.hg this would be a gradien.t 

toward the poles. Due to this pressure gradient a global wind system is set up,, 

in v7hich the vertical wind plays a decisive role. There must be a height range 

- probably the region above the main heating zone - where a return flcw achieves 

flow continuity. This return flow however must be connected with a pressure 

gradient directed opposite to tl- pressure gradient within the main heating zone. 

Because of the important role of the vertica; wind a quantitative treatment of 

such problem is only possible by a numerical integrstion of the dyndmic equa- 

tions of the spherical thermosphere [Equations (23)]. An attempt to determine 

the vertical winds from the pressure field of the Jacchia model and from the 

h.orizonta1 winds of Geisler (1967) via the equation of continuity (Dickinson and 

Geisler, 1968) suffers from the unaccuracy of the density observations below 

200 km altitude. 

Figure 3 finally presents the horizontal wind field in the northern hemisphere 

at 300 km height in  a form used by Kohl and King (1967). This allows a direct 

comparison between Kohl and King's winds (their Figure 5) and our wind. The 

strikiiig difference between both wind fields is the presence of the equatorward 

wind component at low latitudes and of daytime in our wind field. This component 

is due to the relatively large zonal wind. Its generating zonal pressure gradient 

p20 can be observed already in Jacchia and Slowey's (1967) data at low solar 

activity, though Jacchia's number value is smaller than the value observed by 
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Newton (1968). Kohl and King (1967) entirely neglected the zonal winds. They 

moreover used a constant collision number for the whole hemisphere. 

Therefore we cafi only cow-pare our diurnal windsystem (u  1, v1 ) with their 

data, which ie in  reasor,able agreement. It shows that slight differences in the 

numerical data of the pressure gradient p l l  and of the collision number v are 

relatively unimportant coiripared with the influence of the zotial winds. 

Geisler's (1967) winds are very similar to Kohl and King's (1967) wind& 

because they are based on the same calculation method. Gei .Ler, however, found 

already the mean component vo0 from Jacchia's data. Since Jac.Ll,- 's zonal 

pressure component is supposed to be too small, Geisler could not detect the 

equatorial winds at daytime , though he observes Ita convergence in low latitules" 

in his horizontal wind field, which is the direct conrequence of the superpo-:ition 

of the diurnal system with the zonal system. 

8. Conclusion 

The solar diurnal tides of the spherical thermosphere 'have been treated 

using spherical humonics of lowest degree as sigenfunctions of the preblem. 

Perturbation theory is a sufficient approximation within t t e  thermosphere below 

400 lun altitude. It allows to determine the lnean physical pa rcue tws  like pres- 

sure, temperature and molecular weight from the observed density data by a 

static diffusim model (Jacchia, 1964). Thus, these data were the basis for a 

perturbation treatment of the hydrodyamic equations leading to a complete 

separation between a zonal component, depending only on latitude and height, and 
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a diurnal component, dzpepdent on latitude, height and local time. A general 

solution for both the zonal and the diurnal system is given. 

The hmizontal wind field turns out to depend mainly on the horiemtal pres- 

sure  grddients. Based on observed data for the zonal and the diurnal components 

of tha pressure gradient, the horizontai wind at 300 km altitude and for low solar 

activity has Seen calculated. Its results show an equatorward directed wind ;low 

at low latitudes even at day time which is due to the relatively large zonal pres- 

sure gradieni. This wind could possjbly cause the equatorial F2 anomaly: the  

trough in the electron density at the geomagnetic equator du;.ing low solar 

activity. 
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Table I 

P l l  P3 1 

To = 250°K 0.88 2.16 

To = 1000°K 2.16 5.29 

Number Sn, of the -igenfunctions Prim of the diurnal tidal component 

(m = 1) for two different isothermal atmospheres of temperature 

To = 250°K and To = 1000°K. 

ps 1 

3.41 

8.36 
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Figure 3. Calculated horizontal wind system at 300 k m  altitude 
in the northern hemisphere versus local time 
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